IDSMED

APPLICATION TECHNIQUE STERILIZATION

Mr. Edmond Ng
Sales \& Marketing Director - IdsMED Việt Nam

Demands on the Sterilization process " PAST"

-Technical construction according EN 285 (1996) „Type proof"

- Demands of the customer for the sterilization process
- Reached limits of the sterilizer

Demands on the Sterilization process "NOW"

-Technical construction according EN 285 (2006) „Type proof"

- Reached limits of the sterilizer
- Demands of the customer for the sterilization process „all-inone device suitable for every purpose and this for no costs"

Customer requirements

- Sterile medical products
- Short batch times
- Maximum load
- No residual moisture
- All container and packaging possibilities are unlimited usable
- Everything has to be possible

Factors for a good Sterilization process

Packaging

Rigid Packaging

- Container built according to EN 868 Part 8
- Test load 10 kg per StU

Drying performance according to EN 868 Part 6

- Residual moisture < 0.2\% (Metal load)
- Residual moisture < 1.0\% (Textile load)

Material properties

- Container and cover made of stainless steel
- Container and cover made of Aluminium / Metal trays
- Aluminium container with stainless steel cover / Metal trays
- Aluminium container with stainless steel cover / Metal trays / Condensate drain
- Aluminium container with plastic cover / Metal trays
- Container and cover made of Aluminium / Plastic trays
- Aluminium container with plastic cover / Plastic trays

Calculation Amount of condensate (Stainless steel)

```
Heat requirement (Q =m }\times\textrm{c}\times\Delta\textrm{t}
= 12kg }\times0.5\textrm{kj}/\textrm{kg}/\textrm{K}\times114\textrm{K}=686\textrm{kj
```



```
Energy capacity of steam 1 kg Steam\cong2000kj (r)
Steam quantity (md) = Quantity of condensate Q =md }\times
md = Q/r = 686kj / 2000kj = 0.342 kg = 343g Steam
```


Calculation Amount of condensate (Plastic)

Heat requirement $(Q=m \times c \times \Delta t)$
$=12 \mathrm{~kg} \times 2.5 \mathrm{kj} / \mathrm{kg} / \mathrm{K} \times 114 \mathrm{~K}=3420 \mathrm{kj}$
Δt Temperature difference $\left(20^{\circ} \mathrm{C}-134^{\circ} \mathrm{C}\right)$

Energy capacity of steam 1 kg Steam $\cong 2000 \mathrm{kj}(\mathrm{r})$

Steam quantity $(m d)=$ Quantity of condensate $Q=m d \times r$
$\mathrm{md}=\mathrm{Q} / \mathrm{r}=3420 \mathrm{kj} / 2000 \mathrm{kj}=1.71 \mathrm{~kg}=1710 \mathrm{~g}$ Steam

Plastic needs

approx. $5 \times$ more energy to heat up!

More Energy

= More condensate
= Longer drying time

= Longer process time

Flexible Packaging

- Papers (plain, crepe, semi crepe, fleece)
- Foils / pouches (Gas, Steam, Gamma-rays)
- No textiles (Textile alternative)
- Textiles

Materials Characters

- Cotton
- Cellulose 100\%
- Cellulose with binding material
- 100% Polypropylene
- Polypropylene with absorber coating

Norm: EN 285 (Residual moisture)

- Sterilization process 3.5 min at $134^{\circ} \mathrm{C}$
- Drying capacity according to EN 285 (8.4.2)
- Test container $1 \mathrm{StU}(14.1 \mathrm{~kg} \pm 0.4 \mathrm{~kg})$

(Container ($4,2 \mathrm{~kg}$) + Screws $(8,6 \mathrm{~kg})+$ Tray $(1,3 \mathrm{~kg})+$ Cotton wrapping $)$
- Residual moisture $<0.2 \%$ (28.2 g with metal load)

Condensate within the wrapping

Increase of weight in \%

If the weight of the container increases, also the amount of the condensate increases!

Reminder

With increase of the container weight the condensate amount increases!

More container weight

= More condensate
= Longer drying time
= Longer process time

Condensate residue (after drying)

Visible

- Drops
- Water accumulation

Non visible

- Integrated in sterilisation fleece

Example with 10 ml water

- 100\% Cellulose with chemical
binding material

-Textile

Example with 10 ml water

- Polypropylene with absorber

-100\% Polypropylene Cellulose

Visual check (Dryness)

- Drop $<1 \mathrm{ml}$
- Big drop < 5ml
- Accumulation approx.10ml
- Allowed remaining quantity according to Norm: 28g

Picture source of error

Picture Container full

Picture Container condensate

- After a load of 24 kg instruments

- Marking from filter lid

How to do it right: Correct loading

- Light sterile goods in flexible packs should be loaded on the top.
- Heavy containers should be placed at the bottom of the chamber.

Reasons:

- The heavier the items are, the higher is the amount of condensing water
- Lighter packs must be "protected" against drops of condensing water

How to do it right: Correct loading

- Pouches

- Unhindered in - and out of air and steam

Bad examples

- Overloaded, packaging can not breath

Bad examples

- Textiles in contact with sterilizer chamber
(Loading index = width of batch cart)

Influence of packing materials to drying result

Packing material	Drying result	Type
Cotton	++	1- layer
Cellulose	++	1- layer
Cellulose	+	2- layer
Polypropylene + mixed fibres	++	1- layer
Polypropylene + mixed fibres	+	2- layer
100% Polypropylene	O	1- layer
100% Polypropylene	-	2- layer

--	-			
bad	O	+ average	good	Very good

Different containers led to different drying results

Container	Drying result
Container and cover made of Aluminium / Metal trays	++
Aluminium container and cover made of stainless steel / Metal trays	+
Aluminium container with plastic cover / Metal trays	O
Container and cover made of Aluminium / Plastic trays	-
Aluminium container with plastic cover / Plastic trays	--

\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline-- & - \\
\text { very bad }\end{array}
$$ \quad $$
\begin{array}{c}\text { O } \\
\text { average }\end{array}
$$ \quad \begin{array}{c}+

good\end{array}\right]\)| ++ |
| :---: |
| Very good |

Residual moisture MATRIX Container-10kg

-Based on Sterilization process $3.5 \mathrm{~min} .134^{\circ} \mathrm{C}, 25$ Min drying

Packaging	Cotton cloth	100% Cellulose	Polypropylene and mixed fibres	100\% Polyproplene
Sainless steel with cond. drain	\ddots	\ddots		
Sainless steel w/o cond. drain	\ddots	\ddots	\ddots	
Aluminium with Aluminium cover	\ddots	\ddots	\ddots	\ddots
Aluminium with plastic cover	\ddots	\ddots	\ddots	\ddots

bad	average	good	Very good
		\ddots	\ddots

Residual moisture MATRIX Container 12 kg - 14 kg

Packaging	Cotton cloth	$\begin{gathered} 100 \% \\ \text { Cellulose } \end{gathered}$	Polypropylene and mixed fibres	$\begin{gathered} 100 \% \\ \text { Polyproplene } \end{gathered}$
Sainless steel with cond. drain	())	())	(-)	
Sainless steel w/o cond. drain	()	()		
Aluminium with Aluminium cover	())	())		
Aluminium with plastic cover	()	()		
	bad	average	good	Very good
			-)	(-)

No.	CYCLE	STR TEMP	STIRUZE TME	DRY TME	RECOMMENDELOAD
1	Instruments $134^{\circ} \mathrm{C}$	$134^{\circ} \mathrm{C}$	4 minutes	25 minutes	Instrument intraysor containers max. 7-8kg/ trayor container

No.	CYCLE	STERUZ TEMP	STGRUZ TME	DRY TME	RECOMMENDEDLOAD
7	Heavy Instruments $134^{\circ} \mathrm{C}$	$134^{\circ} \mathrm{C}$	4 minutes	20 min. $+3^{*} 1,5$ min	Heavyinstrumentsin stainless steel containers, max. $14 \mathrm{~kg} /$ container (gross weight)

- Indicatescycletransitionpoints
thatarepintedduringcycle

Optimizing Residual moisture

- Total weight of container shall not exceed. 14 kg per StU
- Filling level of container max. 3cm below upper edge
- Minimize the use of plastic trays
- Use well absorbing wrapping material
- Pulsed-vacuum-dry is more effective vacuum dry

Source of errors: Loading

- Container is to small
- Filling level of container is exceeded
- Size of packaging paper is to big
- Stacked containers
- Horizontal positioning of flexible pouches

Source of errors: Installation

Steam to wet

- Steam supply without condensate trap
- Power of steam generator not sufficient
- Condensate trap (mechanical better than thermal)

iDSMED

Xin cảm ơn
Mr. Edmond

