

APPLICATION TECHNIQUE STERILIZATION

Mr. Edmond Ng

Sales & Marketing Director – IdsMED Việt Nam

Demands on the Sterilization process "PAST"

•Technical construction according EN 285 (1996) "Type proof"

- Demands of the customer for the sterilization process
- Reached limits of the sterilizer

Demands on the Sterilization process "NOW"

Technical construction according EN 285 (2006) "Type proof"

- Reached limits of the sterilizer
- Demands of the customer for the sterilization process <u>all-in-</u> one device suitable for every purpose and this for no costs

Customer requirements

- Sterile medical products
- Short batch times
- Maximum load
- No residual moisture
- All container and packaging possibilities are unlimited usable
- Everything has to be possible

Packaging

Rigid Packaging

- Container built according to EN 868 Part 8
- Test load 10 kg per StU

Drying performance according to EN 868 Part 6

- Residual moisture < 0.2% (Metal load)
- Residual moisture < 1.0% (Textile load)

Material properties

- Container and cover made of stainless steel
- Container and cover made of Aluminium / Metal trays
- Aluminium container with stainless steel cover / Metal trays
- Aluminium container with stainless steel cover / Metal trays / Condensate drain
- Aluminium container with plastic cover / Metal trays
- Container and cover made of Aluminium / Plastic trays
- Aluminium container with plastic cover / Plastic trays

<u>Heat requirement</u> ($Q = m \times c \times \Delta t$)

= $12\text{kg} \times 0.5\text{kj/kg} / \text{K} \times 114\text{K} = 686 \text{ kj}$

 Δt Temperature difference (20°C -134°C) c Specific heat capacity (1kg for 1°C)

<u>Energy capacity of steam</u> 1 kg Steam \cong 2000kj (r)

<u>Steam quantity (md)</u> = Quantity of condensate $Q = md \times r$ md = Q/r = 686kj / 2000kj = 0.342 kg = 343g Steam

Calculation Amount of condensate (Plastic)

<u>Heat requirement</u> ($Q = m \times c \times \Delta t$)

= 12kg × 2.5kj/kg / K × 114K = 3420kj

 Δt Temperature difference (20°C -134°C)

<u>Energy capacity of steam</u> 1 kg Steam \approx 2000kj (r)

<u>Steam quantity (md)</u> = Quantity of condensate $Q = md \times r$ md = Q/r = 3420kj / 2000kj = 1.71kg = 1710g Steam

Reminder

Plastic needs approx. 5 x more energy to heat up!

- **More Energy**
- = More condensate
- = Longer drying time
- = Longer process time

Flexible Packaging

- Papers (plain, crepe, semi crepe, fleece)
- Foils / pouches (Gas, Steam, Gamma-rays)
- No textiles (Textile alternative)
- Textiles

Materials Characters

- Cotton
- Cellulose 100%
- Cellulose with binding material
- 100% Polypropylene
- Polypropylene with absorber coating

Norm: EN 285 (Residual moisture)

- Sterilization process 3.5min at 134°C
- Drying capacity according to EN 285 (8.4.2)
- Test container 1 StU (14.1 kg ± 0.4 kg)
 (Container (4,2 kg) + Screws (8,6 kg)+ Tray (1,3 kg) + Cotton wrapping)
- Residual moisture < 0.2% (28.2 g with metal load)

Condensate within the wrapping

Increase of weight in %

If the weight of the container increases, also the amount of the condensate increases!

Reminder

With increase of the container weight the condensate amount increases!

More container weight

- = More condensate
- = Longer drying time
- = Longer process time

Condensate residue (after drying)

IDSMED

<u>Visible</u>

- Drops
- Water accumulation

Non visible

Integrated in sterilisation fleece

Example with 10 ml water

 100% Cellulose with chemical binding material

Example with 10 ml water

Polypropylene with

absorber

100% Polypropylene Cellulose

Visual check (Dryness) Drop < 1ml

Picture source of error

Picture Container full

Picture Container condensate

After a load of 24kg instruments

How to do it right: Correct loading

- Light sterile goods in flexible packs should be loaded on the top.
- Heavy containers should be placed at the bottom of the chamber.

Reasons:

- The heavier the items are, the higher is the amount of condensing water
- Lighter packs must be "protected" against drops of condensing water

How to do it right: Correct loading

Pouches

Unhindered in – and out of air and steam

Bad examples

 Overloaded, packaging can not breath

 Textiles in contact with sterilizer chamber (Loading index = width of batch cart)

Bad examples

Influence of packing materials to drying result

Packing material	Drying result	Туре
Cotton	++	1- layer
Cellulose	++	1- layer
Cellulose	+	2- layer
Polypropylene + mixed fibres	++	1- layer
Polypropylene + mixed fibres	+	2- layer
100% Polypropylene	0	1- layer
100% Polypropylene	-	2- layer

	-	0	+	++
very bad	bad	average	good	Very good

Different containers led to different drying results

Container	Drying result
Container and cover made of Aluminium / Metal trays	++
Aluminium container and cover made of stainless steel / Metal trays	+
Aluminium container with plastic cover / Metal trays	0
Container and cover made of Aluminium / Plastic trays	-
Aluminium container with plastic cover / Plastic trays	

	-	0	+	++
very bad	bad	average	good	Very good

Residual moisture MATRIX Container-10kg

Based on Sterilization process 3.5min. 134°C, 25 Min drying

Packaging Container	Cotton cloth	100 % Cellulose	Polypropylene and mixed fibres	100% Polyproplene
Sainless steel with cond. drain		\odot		
Sainless steel w/o cond. drain			<u></u>	<u></u>
Aluminium with Aluminium cover		\odot	<u></u>	Ċ
Aluminium with plastic cover		\odot		

bad	average	good	Very good
		\odot	

Residual moisture MATRIX Container 12kg - 14kg

Packaging	Cotton cloth	100 % Cellulose	Polypropylene and mixed	100% Polyproplene
Container			fibres	
Sainless steel with cond. drain				
Sainless steel w/o cond. drain				
Aluminium with Aluminium cover				
Aluminium with plastic cover		\odot		
	bad	average	good	Very good
			\odot	\odot

Process

N	lo.	CYCLE	steriuze Temp	Sterilize Time	DRY TIME	RECOMMENDEDLOAD
1		Instruments 134°C	134°C	4 minutes	25 minutes	Instrument intraysor containers max. 7-8kg/trayor container

Process

No.	CYCLE	sterilize Temp	sterilize Time	DRY TIME	RECOMMENDEDLOAD
7	Heavy Instruments 134°C	134°C	4 minutes	20 min. + 3*1,5 min	Heavy instruments in stainless steel containers, max. 14kg / container (gross weight)

Optimizing Residual moisture

- Total weight of container shall not exceed. 14 kg per StU
- Filling level of container max. 3cm below upper edge
- Minimize the use of plastic trays
- Use well absorbing wrapping material
- Pulsed-vacuum-dry is more effective vacuum dry

Source of errors: Loading

- Container is to small
- Filling level of container is exceeded
- Size of packaging paper is to big
- Stacked containers
- Horizontal positioning of flexible pouches

Source of errors: Installation

Steam to wet

- Steam supply without condensate trap
- Power of steam generator not sufficient
- Condensate trap (mechanical better than thermal)

Xin cảm ơn

Mr. Edmond

