

Active CRE screening in the Vietnamese hospitals: Should or should not?

ReAct

Mattias Larsson, Associate Professor, MD, PhD, Karolinska Institutet Training and Research Academic Collaboration (TRAC) Sweden – Vietnam Linköping University, Karolinska Institutet and Vietnam National Childrens Hospital

Background

Observational Study

High prevalence 'ed infections caused by gram-negative carbapenem resistant strains in Vietnamese pediatric ICUs

- Children : 1363 cases in 5 Hospitals, average age 11 months
 → HAI 33.1%
- Most common *K. pneumoniae* 55% Carbapenem resistant (*KPC*)

<u>PLoS One</u>. 2016; 11(1): e0147544. Published online 2016 Jan 29. doi: <u>10.1371/journal.pone.0147544</u> PMCID: PMC4732823

Burden of Hospital Acquired Infections and Antimicrobial Use in Vietnamese Adult Intensive Care Units

- Adults : 3287 patients in 14 Hospitals
- → HAI 29.5%
- → Most common Acinetobacter baumannii 89% Carbapenem resistant

Methods of CRE Screening

Rectum swab for feacal sample

Culture on Selective media (Chrom ID agar)

Identification of polymicrobial mixtures

Screening result and susceptibility testing

			Printed Mar 26, 2017 08-26 ICT
Location: SS Lab ID: 274ps			Patient ID: 170065473 Physician Isolate Number 1
Organism Quantity: Selected Organism : Klebsiella pri Source: p	eumoniae ssp pneumoniae		Collected: Mar 23, 2017
Comments:			
Identification Information	Analysis Time:	4.00 hours	Status: Final
Selected Organiem	99% Probability	Klebsiella pneumonia	e ssp pneumoniae

6607734652164010

lionumber

Selected Organism

ID Analysis Messages

dentification Information		Analysis Time:	2.75 hours	Status:	Final
Selected Organism		99% Probability Bionumber:	Escherichia coli 0405610450026611		
ID Analysis Messages					
Susceptibility Information	Analysis Tim	e: 7.75 hours		Status:	Final
Antimicrobial	MIC	Interpretation	Antimicrobial	MIC	Interpretation
Piperacillin	>= 128	R	Amikacin	>= 64	R
Ticarcillin	>= 128	R	Gentamicin	>= 16	R
Ceftazidime	>= 64	R	Tobramycin	>= 16	R
Cefepime	>= 64	R	Ciprofloxacin	>= 4	R
Piperacillin/Tazobactam	>= 128	R	Levofloxacin	>= 8	R
Aztreonam	>= 64	R	Trimethoprim/Sulfamethoxazole	>= 320	R
Imipenem	>= 16	R	Colistin	8	R
					10 10 mm

Susceptibility Information	Analysis Time: 8.75 hours		Status: Final		
Antimicrobial	MIC	Interpretation	Antimicrobial	MIC	Interpretation
Piperacillin	>= 128	R	Amikacin	>= 64	R
Ticarcillin	>= 128	R	Gentamicin	># 16	R
Ceftazidime	>= 64	R	Tobramycin	>= 16	R
Cefepime	>= 64	R	Ciprofloxacin	>= 4	R
Piperacillin/Tazobactam	>= 128	R	Levofloxacin	>= 8	R
Aztreonam	>= 64	R	Trimethoprim/Sulfamethoxazole	«= 20	S
Imipenem	>= 16	R	Colistin	>= 16	R
Meropenem	>= 16	R			

Consistent	
	Consistent

Clinical data collection

- Demographic data
- Reason of admission
- Invasive procedures (Intubation, CVC, PVC etc)
- HAI diagnosis
- Duration of treatment
- Treatment outcome
- Electronic CRF
- https://docs.google.com/forms/d/1N9DsrSK8NgaE9MqtDs4Y42 dqXsISNR97Ebb6ncH8160/edit

The Majority of KPC Strains Resistant To Most Antibiotics With Increasing Colistin Resistance

Admission : 31,8% CRE+

Distribution of CRE+Admission

Discharge : 82,5% CRE+

Distribution of CRE+ discharge

Increase (Acquisition) \rightarrow 51,7%

Crude mortality – CRE+

CRE + at discharge → Significantly (p<0,01) increased risk for HAI (n=305)

Crude mortality – CRE+

CRE + at discharge → Significantly (p<0,01) increased crude mortality (n=305)

Duration of Treatment – CRE+

CRE + at discharge → Significantly (p<0,01) increased treatment > 7days

Average duration of treatment: CRE+ 8,4 days > CRE- 5,4 days

VNCH NICU Admission - Discharge CRE Screening, n=305

Journal of Hospital Infection

The association between infection control interventions and carbapenem-resistant Enterobacteriaceae incidence in an endemic hospital

```
K. Hussein <sup>a, b, *</sup>, G. Rabino <sup>a</sup>, O. Eluk <sup>a</sup>, S. Warman <sup>a</sup>, S. Reisner <sup>b, c</sup>, Y. Geffen <sup>b, d</sup>,
L. Halif <sup>e</sup>, M. Paul <sup>a, b</sup>
```

Israel: 186.6 new acquisitions per 100,000 hospital-days.

Key intervention: CRE screening at admission, then applying mix intervention strategies including cohort care $\rightarrow 27\%$ reduction CRE colonization.

- For patients with culture confirmed CRE HAI
- For patients CRE colonized at admission?

Example : Active CRE screening based on 1000 ICU patients

Active CRE screening and cohort care with assumption decrease of 30% CRE colonization

HAI \rightarrow 180

Crude mortality $\rightarrow 50$

Hospital days \rightarrow 6700

Cost based on 500 USD per ICU day

Example: Burden of resistance per 10.000 ICU patients

- Excess HAI \rightarrow 2400 (40,5% CRE+ vs 16,2% CRE- =)
- Excess Mortality → 750 Crude mortality (23,7% CRE+ vs 16,2% CRE-)
- Hospital days → 30000 *0,8 = 24000 days (duration of treatment 8,4 CRE+ vs 5,4 days CRE-)
- Estimated cost 500 USD/day → 12 million USD (270 billion VND)
- Cost for screening 3 USD per patient \rightarrow 30.000 USD
- Cohort care reduction of colonization with 30% → saving 4 million USD → Cost saving 3.970.000 USD (Estimate).

Conclusion and Recommendations

- There is a high rate of CRE colonization in Vietnamese hospitals
- About 30% CRE colonization in Provincial level and 60% in central level hospitals
- There is a significant correlation between CRE colonization, HAI, duration of treatment and crude mortality
- Active admission screening and cohort care of CRE colonized patients can reduce transmission, HAI, treatment time and mortality.
- In central level hospital active screening is cost effective if cohort care can be implemented
- In provincial level hospitals the cost effectiveness of active CRE screening depends on CRE colonization rates and capacity of the hospital
- Active CRE screening is recommended as a tool for Infection Control monitoring and as basis for interventions

CAM ON QUY VI DA LANG NGHE

THANK YOU FOR YOUR ATTENTION

TRAC SWEDEN - VIETNAM

GÖTEBORG

UNIVERSITY

LINKÖPING

UNIVERSITY

Karolinska

Institutet

UMEÅ

UNIVERSITY

UPPSALA UNIVERSITY

UNIVERSITY OF MEDICINE AND PHARMACY - HCMC HANOI MEDICAL UNIVERSITY

CHILD HEALTH

TRAINING AND RESEARCH ACADEMIC CENTER